有关 NaHCO₃ 溶液中离子浓度大小问题的探讨

河北省唐山第一中学 063000 乔 悦 赵广柱

高中化学习题中,有一类离子浓度大小比较的问题,常常给出不符实际的答案,对学生产生误导。今以 NaHCO₃ 溶液中离子浓度的大小关系为例,对此加以阐述:

例 0.050 mol/L 的 NaHCO₃ 溶液呈碱性 ,下 列关系式不正确的是()。

A.
$$c$$
 (Na $^+$) = c (HCO $_3^-$) + c (H $_2$ CO $_3$) + c (CO $_3^{2-}$)

B.
$$c(Na^+) + c(H^+) = c(HCO_3^-) + c(CO_3^{2-}) + c(OH^-)$$

C.
$$c(\text{Na}^+) > c(\text{HCO}_3^-) > c(\text{OH}^-) > c(\text{H}^+)$$

> $c(\text{CO}_3^{2-})$

D.
$$c(H^+) + c(H_2CO_3) = c(CO_3^{2-}) + c(OH^-)$$

答案通常为 B ,均把 C 选项认为是正确的 ,他 们的理由是: 0.05 mol/L 的 NaHCO_3 溶液呈碱性 , 所以 $c(\text{OH}^-) > c(\text{H}^+)$; 溶液中存在 $\text{HCO}_3^- \iff \text{H}^+ + \text{CO}_3^{2^-}$, $\text{H}_2\text{O} \iff \text{H}^+ + \text{OH}^-$,第一个平衡电离出的 H^+ 浓度等于 $\text{CO}_3^{2^-}$ 浓度 ,而第二个平衡又多电离出部分 H^+ ,所以 $c(\text{H}^+) > c(\text{CO}_3^{2^-})$ 。笔者对此有异议。

点评 该题是溶液中是否存在可逆反应的探究 因此明确实验目的是关键。该题重点突出每一步骤的实验探究方法,尤其突出了对照实验中

一、问题的讨论

以 0.050 mol/L NaHCO₃ 溶液为例 ,计算溶液中 $c(H^+) = ? c(CO_3^{2-}) = ?$

已知 H_2CO_3 的 $pK_{a_1} = 6.38 pK_{a_2} = 10.25$ NaHCO₃ 的质子条件式:

c(H⁺) + c(H₂CO₃) = c(CO₃²⁻) + c(OH⁻) 代入平衡关系:

$$c(H^{+}) + \frac{c(H^{+}) c(HCO_{3}^{-})}{K_{a_{1}}}$$

$$= \frac{K_{a_{2}} c(HCO_{3}^{-})}{c(H^{+})} + \frac{K_{w}}{c(H^{+})}$$

c(H⁺) 的精确式为:

$$c(H^+) = \sqrt{\frac{K_{a_2}c(HCO_3^-) + K_w}{1 + c(HCO_3^-) / K_{a_1}}}$$

 $c(\text{ HCO}_3^-)$ 是未知的 ,因 K_{a_i} 与 K_{a_i} 相差较大 ,所以 $c(\text{ HCO}_3^-) \approx c = 0.050 \text{ mol/L}$

$$K_{a} \times c = 10^{-10.25} - 1.30 = 10^{-11.55} \gg K_{w}$$

 \therefore 精确式中忽略 K_w ,即与 HCO_3^- 的酸性相比 ,水的酸性太小。

变量的控制思想 需要学生有扎实的基本功和实验思维。每一步实验的反思与评价是本题的亮点 最后对照实验探究陌生的可逆反应存在与否是本题的难点 需学生克服内心的不自信 找到突破口 认真寻找合适的对照实验 即可验证对应结论。

通过以上对两个经典实例的探究,不难发现要做好实验综合题最关键的是在最短时间内明确实验目的,具体问题具体分析,对应不同类型的实验有不同的解题方法。在实验过程中,仪器选择、实验操作、获得数据等都是为达到最终目的服务的。要积累一定的经典实验实例,才能在解答实验题上取得进步。

(收稿日期: 2016 - 01 - 15)

c(H⁺)为:

$$c(\mathrm{H}^{+}) = \sqrt{\frac{K_{a_{1}}c}{1 + c/K_{a_{1}}}}$$

$$\therefore \frac{c}{K_{a_{1}}} = \frac{10^{-1.30}}{10^{-6.38}} = 10^{5.08} \gg 20$$

 \therefore 忽略分母中的 1 ,即 $\mathrm{HCO_3}^-$ 的碱性也不弱 , 水的碱性可忽略

c(H⁺)的最简式为:

$$c(H^+) = \sqrt{K_a K_{a}}$$

代入数值进行计算:

$$c(\mathrm{H}^{+}) = \sqrt{K_{\mathrm{a}} K_{\mathrm{a}}} = \sqrt{10^{-6.38-10.25}} = 10^{-8.32}$$

下面计算 0.050 mol/L NaHCO $_3$ 溶液中, $c(\ {\rm CO}_3^{2^-})$ 的大小

$$c(H^+) = \sqrt{K_a K_{a}}$$

根据多元酸中各型体的分布规律:

$$c(CO_3^{2-}) = c \frac{K_{a_1}K_{a_2}}{c(H^+)^2 + K_{a_1}c(H^+) + K_{a_1}K_{a_2}}$$

$$= c \frac{K_{a_1}K_{a_2}}{(\sqrt{K_{a_1}K_{a_2}})^2 + K_{a_1}\sqrt{K_{a_1}K_{a_2}} + K_{a_1}K_{a_2}}$$

$$= c \frac{K_{a_1}K_{a_2}}{K_{a_1}K_{a_2} + K_{a_1}\sqrt{K_{a_1}K_{a_2}} + K_{a_1}K_{a_2}}$$

$$\approx c \frac{K_{a_1}K_{a_2}}{K_{a_1}\sqrt{K_{a_1}K_{a_2}}} (\because 2K_{a_1}K_{a_2} \ll K_{a_1}\sqrt{K_{a_1}K_{a_2}})$$

$$= c \frac{K_{a_2}}{\sqrt{K_{a_1}K_{a_2}}} = c \sqrt{\frac{K_{a_2}}{K_{a_1}}}$$

$$= 10^{-1.30} \cdot \sqrt{\frac{10^{-10.25}}{10^{-6.38}}} = 10^{-3.29}$$

∴ 在 NaHCO₃ 溶液中 c(CO₃²⁻) ≫c(H⁺)。
 最终 0.050 mol/L NaHCO₃ 溶液中 c(H⁺)

= $10^{-8.32}$ ρ (OH⁻) = $10^{-5.68}$ ρ (CO₃²⁻) = $10^{-3.29}$ 所以 正确的浓度大小关系为:

 $c(\ \mathrm{Na^+}) > c(\ \mathrm{HCO_3^-}) > c(\ \mathrm{CO_3^{2-}}) > c(\ \mathrm{OH^-}) > c(\ \mathrm{H^+}) _{\odot}$

之所以出现与高中阶段分析不一样的结果, 笔者认为原因是 HCO_3^- 的水解和 HCO_3^- 的电离相互促进 $(c CO_3^{2-})$ 变得较大 而 HCO_3^- 水解出来的 $c(OH^-)$ 和 HCO_3^- 电离出来的 $c(H^+)$ 的乘积远大于 $K_w = 10^{-14}$,使反应 $H_2O \Longrightarrow H^+ + OH^-$ 很大程度向左进行, $c(H^+)$ 大大降低了,最终 $c(CO_3^{2-}) \gg c(H^+)_{\circ}$

常见另一类比较 pH 大小的题目:

例 0.050 mol/L 的下列溶液 pH 由大到小的顺序为____。

A. CH₃COONa

B. NaHCO₃

C. Na, CO₃

D. NaOH

这类习题按照高中阶段所学的水解规律"越弱越水解"得出的结论为 D > C > B > A,理由为:酸性大小顺序 $CH_3COOH > H_2CO_3 > HCO_3^-$,按越弱越水解规律得溶液碱性 C > B > A,NaOH 是强碱所以等物质的量浓度时它的 pH 最大,最终排序 D > C > B > A。笔者对此有异议。

理由如下:

计算 0.050 mol/L CH₃COONa 的 pH =?

 $:: CH_3COOH$ 的 p $K_a = 4.76$,

∴ CH_3COONa 的 $pK_b = 14 - 4.76 = 9.24$

$$\therefore \frac{K_{\rm b}}{c} = \frac{10^{-9.24}}{10^{-1.30}} = 10^{-7.94} \ll 2.5 \times 10^{-3}$$

∴
$$c(\text{ OH}^-) = \sqrt{K_{\text{b}} \cdot c} = \sqrt{10^{-9.24} \times 10^{-1.30}}$$

= $10^{-5.27}$

$$c(H^+) = \frac{K_w}{c(OH^-)} = \frac{10^{-14}}{10^{-5.27}} = 10^{-8.73}$$

所以 pH = 8.73

由上题知:

0. 050 mol/L NaHCO₃ 溶液中 c(H⁺) = 10^{-8.32} pH = 8.32

所以 pH 由大到小的顺序应为: D > C > A > B 之所以出现计算结果与分析结果的不同,笔者认为原因在于高中阶段分析 $NaHCO_3$ 溶液的碱性时,忽略了 HCO_3 的电离,造成了与实际结果的不一样。通过计算告诉我们, HCO_3 的电离是不应该忽略的,否则会造成与客观事实不符的现象。

高中阶段所学的化学知识很基础,好多定量计算都没有涉及,许多命题者想当然的就把一些习题出了出来,实际在高中阶段学生是不能够得出正确答案的,这类习题反而会误导学生, 百害而无一利, 笔者建议高中教师在选择习题时一定要慎重。

(收稿日期: 2016 - 01 - 15)