溶液中的等式与不等式的推导

江苏省太仓市明德高级中学

215400 吴秋萍

一、溶液中的三个等式

以 Na_2CO_3 溶液和 CH_3COONa 溶液为例 推导溶液中三个等式的建立。

1. 从溶质角度建立等式(物料守恒)

 Na_2CO_3 晶体中, Na^+ 个数是 $CO_3^{2^-}$ 个数的 2 倍,即 $n(Na^+)=2n(CO_3^{2^-})$ 。当 Na_2CO_3 接触到水时,水中存在 H^+ 和 OH^- , Na^+ 不与 H^+ 、 OH^- 反应,仍以钠离子形式存在。而 $CO_3^{2^-}$ 虽不会与 OH^- 作用,但会结合水中的 H^+ (即水解)而部分转化为 HCO_3^- 、 H_2CO_3 ,根据 $CO_3^{2^-}$ 守恒 将溶液中未水解的 $CO_3^{2^-}$ 加上水解生成的 HCO_3^- 和 H_2CO_3 即为原晶体中总的 $CO_3^{2^-}$ (水解生成的 HCO_3^- 加上水解生成的 HCO_3^- 加上水解生成的 HCO_3^- 加上水解生成的 HCO_3^- 加上水解生成的 H_2CO_3 等于水解消耗的 $CO_3^{2^-}$,即 HCO_3^- 和 H_2CO_3 可看成是原来晶体中发生了水解的那部分 $CO_3^{2^-}$ 的"替身")。根据 Na_2CO_3 晶体中 $n(Na^+)=2n(CO_3^{2^-})$,可知:

 $n(\text{ Na}^+) = 2[n(\text{ CO}_3^{2^-}) + n(\text{ HCO}_3^-) + n(\text{ H}_2\text{CO}_3)]$ 式中所有微粒都在同一溶液中 故可改写为:

 $c(\text{Na}^+) = 2[c(\text{CO}_3^{2-}) + c(\text{HCO}_3^-) + c(\text{H}_2\text{CO}_3)]$

根据以上分析 不难写出 CH₃COONa 溶液中 从 溶质 CH₃COONa 角度出发建立起来的等式为:

$$c(\text{Na}^+) = c(\text{CH}_3\text{COO}^-) + c(\text{CH}_3\text{COOH})$$

2. 从溶剂角度建立等式(质子守恒)

纯水中, H^+ 个数与 OH^- 个数相等,即 $n(H^+)$ = $n(OH^-)$ 。 当水接触到 Na_2CO_3 时,水中的 OH^- 与 Na^+ 、 CO_3^2 不反应,仍以 OH^- 形式存在。 水中的 H^+ 则有部分转化成 HCO_3^- 、 H_2CO_3 根据 H^+ 守恒,将未反应的 H^+ 加上水解生成的 HCO_3^- 、 H_2CO_3 中的氢原子,即为水电离出来的所有氢离子(注意: H_2CO_3 所含的 H 数是 H_2CO_3 数的 2 倍)。根据纯水中 $n(H^+) = n(OH^-)$,可知:

 $n(H^{+}) + n(HCO_{3}^{-}) + 2n(H_{2}CO_{3}) = n(OH^{-})$ 式中所有微粒都在同一溶液中,故可改写为:

$$c(\mathrm{~H^{+}}) + c(\mathrm{~HCO_{3}^{-}}) + 2c(\mathrm{~H_{2}CO_{3}}) = c(\mathrm{~OH^{-}})$$

根据以上分析,不难写出 CH₃ COONa 溶液中,从溶剂 H₂O 角度出发建立起来的等式为:

 $c(OH^-) = c(H^+) + c(CH_3COOH)$

3. 从溶液角度建立等式(电荷守恒)

$$c(\text{Na}^+) + c(\text{H}^+) = 2c(\text{CO}_3^{2-}) + c(\text{HCO}_3^-) + c(\text{OH}^-)$$

CH, COONa 溶液中:

$$c(\text{Na}^+) + c(\text{H}^+) = c(\text{CH}_3\text{COO}^-) + c(\text{OH}^-)$$

溶液由溶质和溶剂组成 ,从上述任何两个等式都可推导出第三个等式。

二、溶液中的三个不等式

以在盐酸中滴入氨水为例,推导所得溶液中的三个典型不等式。

1. 刚好反应生成盐

此时 盐酸与氨水等物质的量反应 ,所得溶液为 NH_4Cl 溶液。 NH_4^+ 与水电离出来的 OH^- 结合成弱碱 $NH_3 \cdot H_2O$,故所得溶液中 $c(Cl^-) > c(NH_4^+)$ $\rho(H^+) > c(OH^-)$ 。又 NH_4^+ 的水解是微弱的 ,达到水解平衡时 $c(NH_4^+)$ 仍然较大 ,故有: $c(Cl^-) > c(NH_4^+) > c(OH^-)$ 。

2. 溶液刚好为中性

此时所得溶液为 NH₄Cl 和稍过量氨水的混合溶液。据溶液电中性,可知:

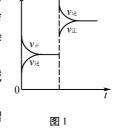
$$c(H^+) + c(NH_4^+) = c(OH^-) + c(Cl^-)$$

又 $c(H^+) = c(OH^-)$
故有: $c(Cl^-) = c(NH_4^+) > c(H^+) = c(OH^-)$
3. 碱(或酸) 明显过量

此时溶液中氨水已明显过量 ,考查时最常见的情况是过量的氨水浓度与 NH_4 Cl 溶液的浓度相等。此时 ,由于 $NH_3 \cdot H_2$ O 的电离大于 NH_4^+ 的水解(绝大多数弱酸、弱碱 ,当其浓度与相应盐的浓度相等时 ,其电离的影响大于其相应盐水解

归类平衡图像 探析问题策略

广东省佛山市顺德区李兆基中学 528300 关朝珠


1. 速率一时间图像

此类图像可以充分体现化学平衡的基本特征 是研究化学平衡移动的重要图像 图像上的一些特殊变化 ,如恒定、相交、等值等 ,往往可以揭示平衡规律 ,通过对图像的定性分析 ,可以研究正、逆反应速率随时间的变化规律。

例 1 现有一密闭容器 ,在特定条件下可以 发生如下化学反应:

$$mA(g) + nB(g) \Longrightarrow pC(g) + qD(g)$$

改变某一条件后 图像会 发生如图 1 所示变化 并且会 重新达到化学平衡 则在该条件下叙述正确的是()。

- A. 如果该条件为压强减小 则有关系: *m* + *n* > *p* + *q*
- B. 如果该条件为压强增 大 则有关系: *m* + *n* < *p* + *q*
- C. 如果该条件为升高温度 ,那么该反应为吸 热反应
 - D. 该条件可能使用了正向催化剂

解析 由图像易知 ,改变条件后正逆反应速率均有增加 ,并且 $v(\dot{y}) > v(\dot{x})$,因此平衡应向

逆方向移动,不可能是减小压强,因此选项 $A \times D$ 错误;而增大压强后平衡逆向移动,反应移动方向 应为气体体积减小的方向,因此有 m+n < p+q,故 B 选项正确;对于选项 C ,温度升高,平衡逆向移动,反应应向着吸热方向进行,则正向应该为放热反应 C 错误,正确答案为 B。

2. 物质转化率-压强/温度图像

图像曲线表示物质转化率随压强/温度的变化情况,对图像进行针对性分析,可以研究物质转化率随压强/温度的变化规律,在实际考题中常设置辅助点来对比设问,用以考查学生对化学平衡速率及移动规律的理解。

例 2 某一容器中发生反应: $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$, ΔH $\alpha(NO)$ < 0,图 2 所示为条件一定时 NO 转化率 α 与温度 T 的变化关系曲线图,图上有 $a \ b \ c \ d$ 4 个点,问其中代表反应未达到平衡状态,并且 $v(\mathbb{T}) < v(\mathcal{Y})$ 的点为()。

A. a B. b C. c D. d

▶的影响),溶液中:

$$c(NH_4^+) > c(Cl^-) > c(OH^-) > c(H^+)$$

仿照上述过程,不难写出在 NaOH 溶液中慢慢滴入 CH₃COOH 溶液时,溶液中存在的三个典型不等式。

恰好反应时:

 $c(\operatorname{Na}^+) = c(\operatorname{CH}_3\operatorname{COO}^-) > c(\operatorname{OH}^-) = c(\operatorname{H}^+)$

酸明显过量(溶液中 CH₃COOH 与CH₃COONa 浓度相等) 时:

 $c(\operatorname{Cl}^{-}) > c(\operatorname{NH}_{4}^{+})$

B. 常温下 ,pH = 2 的一元酸和 pH = 12 的一元强碱等体积混合: $c(OH^{-}) = c(H^{+})$

 $C.\,0.\,1\,$ mol • L^{-1} 的硫酸铵溶液中: $c(\,NH_4^{\,+})>c(\,SO_4^{2^-})>c(\,H^{\,+})$

D. 0. 1 mol·L⁻¹的硫化钠溶液中: $c(OH^-) = c(H^+) + c(HS^-) + c(H_2S)$

解析 选项 A $_{,c}(Cl^{-})$ 应与 $c(NH_{4}^{+})$ 相等。 选项 B 若该一元酸为强酸则 $c(OH^{-}) = c(H^{+})$, 若该一元酸为弱酸则酸明显过量 $_{,c}(OH^{-}) < c(H^{+})$ 。选项 C $_{,c}(NH_{4})$ $_{,c}SO_{4}$ 中 $_{,c}NH_{4}^{+}$ 数是 $_{,c}SO_{4}^{-}$ 的 $_{,c}SO_{$

(收稿日期: 2018 - 03 - 21)