守恒法在高考化学计算中的应用

山东省沂南县第一中学 276300 王卫华 乔国柱

在化学计算中,守恒法是一种最重要的化学 计算方法。守恒法主要包括三种守恒,即元素守 恒、电子守恒、电荷守恒。它们都是抓住有关变化 的始态和终态 淡化中间过程 利用某种不变量建 立关系式 从而达到简化过程 快速解题的目的。 本文进行剖析归纳。

一、电子守恒法

例1 (2016年上海高考题)某铁的氧化物 (Fe₂O) 1.52 g 溶于足量盐酸中 向所得溶液中通 入标准状况下 112 mL Cl, 恰好将 Fe²⁺完全氧化。 x 值为() 。

A. 0. 80 B. 0. 85 C. 0. 90 D. 0. 93

解析 根据电子守恒可知 ,Fe, O 被氧化为 Fe³⁺转移的电子数和 Cl₃转移的电子数相等。标 准状况下 112 mL Cl, 转移电子数为 0.01 mol。 则: $\frac{1.52}{56x+16} \times (3-\frac{2}{x}) \times x = 0.01$,解得 x = 0.80 。 故选项 A 正确。

例 2 某废水中含有 Cr,O²⁻,为了处理有毒 的 Cr₂O₇²⁻ 需要先测定其浓度: 取 20 mL 废水 ,加 入适量稀硫酸 ,再加入过量的 V_1 mL c_1 mol • L $^{-1}$ (NH4),Fe(SO4),溶液,充分反应(还原产物为 Cr^{3+})。用 c_2 mol • L⁻¹ KMnO₄ 溶液滴定过量的 Fe²⁺至终点 消耗 KMnO₄ 溶液 V₂ mL。则原废水 中 $c(\operatorname{Cr}, O_7^{2-})$ (mol·L⁻¹)为(用代数式表示)

A.
$$\frac{c_1 V_1 - 5c_2 V_2}{120}$$
 B. $\frac{c_1 V_1 - 5c_2 V_2}{60}$ C. $\frac{5c_1 V_1 - c_2 V_2}{120}$ D. $\frac{c_1 V_1 + 5c_2 V_2}{120}$

解析 本题有关反应的离子方程式为

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+$$

$$2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

$$5 \text{Fe}^{2+} + \text{MnO}_4^- + 8 \text{H}^+ = -$$

$$5 \text{Fe}^{3+} + \text{Mn}^{2+} + 4 \text{H}_2 \text{O}$$

利用得失电子守恒列等式: c_1 mol • L⁻¹ ×

 $V_1 \text{ mL} \times 10^{-3} \text{ L} \cdot \text{mL}^{-1} = 20 \text{ mL} \times 10^{-3} \text{ L} \cdot \text{mL}^{-1} \times 10^{-3} \text{ L}$ $6c(Cr_2O_7^{2-}) + 5c_2 \text{ mol } \cdot L^{-1} \times V_2 \text{ mL} \times 10^{-3} L \cdot \text{mL}^{-1}$ 解得: $c(\operatorname{Cr}_2\operatorname{O}_7^{2-}) = \frac{c_1V_1 - 5c_2V_2}{120} \operatorname{mol} \cdot \operatorname{L}^{-1}$ 。

答案A。

方法技巧 电子守恒法解题的步骤:

- (1)找出反应中的氧化剂、还原剂及相应的 还原产物和氧化产物。
- (2) 找出一个原子或离子得失电子数目,从 而确定 1 mol 氧化剂或还原剂得失电子数目(注 意化学式中原子或离子个数,如1 mol K,Cr,O,被 还原为 + 3 价 Cr 得电子的物质的量是6 mol)。
- (3) 根据题目中各物质的物质的量和得失电 子守恒列出等式: n(氧化剂 $) \times$ 变价原子数 \times 化 合价变化值 = n(还原剂) × 变价原子数 × 化合价 变化值 从而求算出答案。

二、元素守恒法

例3 为测定某石灰石中 CaCO。的质量分 数 称取 ₩ g 石灰石样品,加入过量的浓度为 6 mol·L-1的盐酸,使它完全溶解,加热煮沸,除 去溶解的 CO,,再加入足量的草酸铵 [(NH₄)₂C₂O₄]溶液后 慢慢加入氨水降低溶液的 酸度 则析出草酸钙沉淀 离子方程式为

$$C_2O_4^{2-} + Ca^{2+} = CaC_2O_4 \downarrow$$

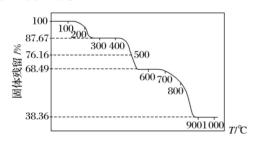
过滤出 CaC,O4 后 ,用稀硫酸溶解:

 $CaC_1O_4 + H_1SO_4 = H_1C_1O_4 + CaSO_4$ 再用蒸馏水稀释溶液至 V_0 mL。取出 V_1 mL 用 $a \text{ mol } \bullet \text{ L}^{-1}$ 的 KMnO₄ 酸性溶液滴定 ,此时发生反 应:

$$2\,MnO_{4}^{-} + 5\,H_{2}C_{2}O_{4} + 6\,H^{+} = = = \\ 2\,Mn^{2+} + 10\,CO_{2}\,\uparrow + 8\,H_{2}O$$

若滴定终点时消耗 $a \text{ mol } \cdot L^{-1}$ 的 $KMnO_a$ V_{2} mL ,计算样品中 CaCO₂ 的质量分数。

解析 本题涉及的化学方程式或离子方程式为 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2 \uparrow$ $C_2O_4^{2-} + Ca^{2+} = CaC_2O_4 \downarrow$


$$CaC_2O_4 + H_2SO_4 = H_2C_2O_4 + CaSO_4$$

 $2MnO_4^- + 5H_2C_2O_4 + 6H^+ = 2Mn^{2+} + 10CO_2 \uparrow + 8H_2O$
由化学(离子) 方程式可以得出相应的关系式:
 $5CaCO_3 \sim 5Ca^{2+} \sim 5CaC_2O_4 \sim 5H_2C_2O_4 \sim 2MnO_4^-$
 5
 $aV_2 \times 10^{-3} \text{ mol}$
和₁($CaCO_3$) $= 2.5aV_2 \times 10^{-3} \times \frac{V_0}{V_1} \text{ mol}$

则 $w(CaCO_3) =$

$$\frac{2.5 aV_2 \times 10^{-3} \times \frac{V_0}{V_1} \text{mol} \times 100 \text{ g} \cdot \text{mol}^{-1}}{W \text{ g}} \times 100\% =$$

$$\frac{25aV_{0}V_{2}}{WV_{1}}\%$$
 .

例 4 为研究一水草酸钙($CaC_2O_4 \cdot H_2O$)的 热分解性质 进行如下实验: 准确称取 36.50 g 样品加热 样品的固体残留率($\times 100\%$)随温度的变化如图 1 所示。

冬 1

- (1)300℃ 时残留固体的成分为_____,900℃ 时残留固体的成分为____。
- (2) 通过计算求出 500 $^{\circ}$ 时固体的成分及质量(写出计算过程)。

解析 (1) $n(\text{CaC}_2\text{O}_4 \cdot \text{H}_2\text{O}) = 0.25 \text{ mol }$,含 水的质量 $m(\text{H}_2\text{O}) = 0.25 \text{ mol } \times 18 \text{ g} \cdot \text{mol}^{-1} = 4.50 \text{ g}$ 在 300% 时,残留率为 87.67%,m(剩余) = $36.50 \text{ g} \times 87.67\% \approx 32 \text{ g}$,减少的质量为 36.50 g - 32 g = 4.50 g 故此时失去全部的结晶水 残留固体为 CaC_2O_4 ;在 900% 时,残留率为 38.36% m(剩余) = $36.50 \text{ g} \times 38.36\% \approx 14 \text{ g}$ 其中 Ca 的质量没有损失, $m(\text{Ca}) = 0.25 \text{ mol } \times 40 \text{ g}$ $\cdot \text{mol}^{-1} = 10 \text{ g}$,另外还含有 $m(\text{O}) = 14 \text{ g} - 10 \text{ g} = 10.25 \text{ mol } \times 10 \text{ g}$

4 g n(O) = 0.25 mol ,则 n(Ca): n(O) = 1:1 ,化 学式为 CaO。

(2) 在 600℃时 残留率为 68.49% m(剩余) = 36.50 g × 68.49% ≈ 25 g ,从 300℃ 至600℃时 ,失去的总质量为 32 g − 25 g = 7 g ,失去物质的摩尔质量为 7 g ÷ 0.25 mol = 28 g • mol $^{-1}$,则应为 CO ,所以 CaC₂O₄ 失去 CO 后 ,产物为 CaCO₃ ,在 500℃时 ,应为 CaC₂O₄ 和 CaCO₃ 的混合物 ,根据 固体总质量及 Ca 元素守恒列式 ,可分别得出两者的物质的量。

设混合物中 CaC_2O_4 和 $CaCO_3$ 的物质的量分别为 x mol 和y mol 根据 500 化时固体总质量可得 128x + 100y = 36.50 g × 76.16% 根据钙元素守恒可得 x + y = 0.25,解得 x = 0.10,y = 0.15, $m(CaC_2O_4) = 0.10$ mol × 128 g • mol $^{-1}$ = 12.80 g , $m(CaCO_3) = 0.15$ mol × 100 g • mol $^{-1}$ = 15.0 g ,500 化时固体的成分为 12.8 g CaC_2O_4 和 15.0 g $CaCO_3$ 。

方法技巧 热重分析的方法:

- (1)设晶体为1 mol。
- (2) 失重一般是先失水、再失非金属氧化物。
- (3) 计算每步的 $m_{\hat{\pi}}$, $\frac{m_{\hat{\pi}}}{m(1 \text{ mol 晶体质量})}$ = 固体残留率。
 - (4) 晶体中金属质量不减少 ,仍在 m_{*} 中。
- (5) 失重最后一般为金属氧化物 ,由质量守恒得 m_0 ,由 $n_{\text{\tiny deg}}$: n_0 ,即可求出失重后物质的化学式。

三、电荷守恒法的应用

例 5 某 100 mL 溶液可能含有 $Na^+ \ NH_4^+ \ Fe^{3+} \ CO_3^{2-} \ SO_4^{2-} \ Cl^-$ 中的若干种 ,取该溶液进行连续实验 ,实验过程如图 2 所示(所加试剂均过量 ,气体全部逸出) 。

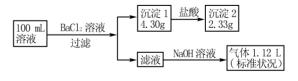


图 2

下列说法不正确的是()。

A. 原溶液一定存在 $\mathrm{CO_3^{2-}}$ 和 $\mathrm{SO_4^{2-}}$,一定不存在 $\mathrm{Fe^{3+}}$

- B. 原溶液一定存在 Cl⁻,可能存在 Na⁺
- C. 原溶液中 c(Cl⁻) ≥0.1 mol L⁻¹
- D. 若原溶液中不存在 Na^+ ,则 c (Cl^-) < 0.1 mol L^{-1}

解析 加入氯化钡溶液 生成沉淀 沉淀部分溶解于盐酸 ,所以一定是 $BaSO_4$ 、 $BaCO_3$ 的混合物 ,一定存在 CO_3^{2-} 、 SO_4^{2-} ,硫酸钡沉淀是 2. 33 g ,物质的量是 $\frac{2.33\,\mathrm{g}}{233\,\mathrm{g}\cdot\mathrm{mol}^{-1}}=0.01\,\mathrm{mol}$ 碳酸根离子

的物质的量是 $\frac{4.30g-2.33~g}{197~g \cdot mol^{-1}} = 0.01~mol$,碳酸根

和铁离子不共存,一定不存在 Fe³⁺,所得到的滤液中加入氢氧化钠,产生的气体为氨气,一定含有铵根离子 根据元素守恒,按根离子的物质的量是

 $\frac{1.12 \text{ L}}{22.4 \text{ L} \cdot \text{mol}^{-1}} = 0.05 \text{ mol}$ 根据电荷守恒 和离子

所带正电荷的物质的量之和为 0.05 mol ,阴离子所带负电荷的物质的量之和为 0.01 mol × 2+0.01 mol × 2=0.04 mol ,所以一定存在氯离子,纳离子不能确定 $p(Cl^-) \ge 0.01$ mol ,所以 $c(Cl^-) \ge 0.1$ mol • L^{-1} 。 A 项 ,原溶液一定存在 CO_3^{2-} 、 SO_4^{2-} 和 Cl^- ,一定不存在 Fe^{3+} ,正确; B 项 ,原溶液一定存在 Cl^- ,可能存在 Na^+ ,正确; C 项 ,原溶液中 $c(Cl^-) \ge 0.1$ mol • L^{-1} ,正确; D 项 ,若原溶液中不存在 Na^+ ,则 $c(Cl^-) = 0.1$ mol • L^{-1} ,错误。故选 D。

四、电子守恒、元素守恒、电荷守恒的综合应用

例 6 碱式次氯酸镁 $[Mg_a(CIO)_s(OH)_a$ 。 $xH_2O]$ 是一种有开发价值的微溶于水的无机抗菌剂。为确定碱式次氯酸镁的组成 进行如下实验:

- ①准确称取 1.685~g 碱式次氯酸镁试样于 250~mL 锥形瓶中 "加入过量的 KI 溶液 "用足量乙酸酸化 "用 $0.800~0~mol \cdot L^{-1}~Na_2S_2O_3$ 标准溶液滴定至终点(离子方程式为 $2S_2O_3^{2-} + I_2 = 2I^- + S_4O_6^{2-}$) "消耗 25.00~mL。
- ②另取 1.685~g 碱式次氯酸镁试样 ,用足量 乙酸酸化 ,再用足量 $3\%~H_2O_2$ 溶液处理至不再产生气泡 ($H_2O_2~$ 被 ClO^- 氧化为 O_2) ,稀释至 1000~ mL。移取 25.00~ mL 溶液至锥形瓶中 ,在一定条件下用 0.02000~ mol L $^{-1}~$ EDTA(Na_2H_2Y) 标准

溶液滴定其中的 Mg^{2+} (离子方程式为 Mg^{2+} + $H_2 Y^{2-}$ === $Mg Y^{2-}$ + $2H^+$) 消耗 25.00 mL。

- (1) 步骤①需要用到的指示剂是____。
- (2)通过计算确定碱式次氯酸镁的化学式(写出计算过程)。

解析 (1) 根据实验①中的离子方程式可知有 I_2 参加 根据 I_2 的特性可选择淀粉作指示剂。 (2) 根据实验①中消耗的 $Na_2S_2O_3$ 的物质的量结合关系式 $CIO^- \sim I_2 \sim 2S_2O_3^{2^-}$ 求得 $n(CIO^-)$ 根据实验②中消耗的 EDTA 的体积结合关系式 $Mg^{2^+} \sim EDTA$ 可求得 $n(Mg^{2^+})$,利用电荷守恒可求得 $n(OH^-)$,根 据 固 体 的 总 质 量 以 及 求 出 的 $n(Mg^{2^+})$ 、 $n(CIO^-)$ 、 $n(OH^-)$ 可求得 $n(H_2O)$,从 而得到 $n(Mg^{2^+})$ 、 $n(CIO^-)$ 、 $n(OH^-)$ 、 $n(H_2O)$ 四者之比 最后得到物质的化学式。

答案 (1)淀粉溶液

(2) 关系式: ClO⁻~I,~2S,O₃²⁻

$$n(\text{ClO}^-) = \frac{1}{2}n(\text{S}_2\text{O}_3^{2-}) = \frac{1}{2} \times 0.800 \text{ 0 mol}$$

• $L^{-1} \times 25.00 \times 10^{-3} L = 0.01 \text{ mol}$

$$n({\rm Mg}^{2+}) = 0.020~00~{\rm mol} \cdot {\rm L}^{-1} \times 25.00 \times$$

$$10^{-3} L \times \frac{1000 \text{ mL}}{25,00 \text{ mL}} = 0.02 \text{ mol}$$

根据电荷守恒 ,可得:

$$n(OH^{-}) = 2n(Mg^{2+}) - n(ClO^{-})$$

 $= 2 \times 0.02 \text{ mol} - 0.01 \text{ mol} = 0.03 \text{ mol}$

m (H_2O) = 1. 685 g - 0. 01 mol × 51.5 g • mol $^{-1}$ - 0. 02 mol × 24 g • mol $^{-1}$ - 0. 03 mol × 17 g • mol $^{-1}$ = 0. 180 g

$$n(\rm H_2O) = \frac{0.180 \rm g}{18 \rm g \cdot mol^{-1}} = 0.01 \rm mol$$

 $n(\text{Mg}^{2+}): n(\text{ClO}^{-}): n(\text{OH}^{-}): n(\text{H}_2\text{O}) = 0.02 \text{ mol}: 0.01 \text{ mol}: 0.03 \text{ mol}: 0.01 \text{ mol} = 2:1:3:$

1 碱式次氯酸镁的化学式为 $Mg_2ClO(OH)_3 \cdot H_2O$ 。

方法技巧 (1)确定化学式就是确定各原子或原子团的个数比 即元素原子的物质的量之比,因此,元素守恒法是解此题的核心方法。

(2) 本题除了用到电子守恒法外 ,最后 ,还需要通过电荷守恒确定 OH 型数目 ,因此 ,电荷守恒法也是解题的一种重要方法。

(收稿日期: 2018 - 05 - 10)